
Research Idea

Feature models capture externally visible characteristics of a product. It is proven intuitive
and efficient for identifying commonality and variability of elements. The main attraction of
any graphical representation is expressiveness. It is very comfortable to comprehend the
entire system if it is represented graphically and if it doesn’t exceed the usual degree of
complexity. However, along with the simplicity and expressiveness another issue should be
taken into account; that is unambiguous and complete representation. Every significant detail
should be exposed in a model. If these ins and outs were to be represented in only one view
and only one model, the system would lose its simplicity and clarity. Therefore another vision
is necessary.

On the other hand, use case modelling is an ideal technique for the analysis and specification
of functional requirements. Sometimes use case relieves the feature model from ‘double
duty’. Now use cases gather and describe user requirements under the control of system
engineer. A Use Case description will generally include:

1. General comments and notes describing the use case
2. Constraints that must be obeyed. It includes pre-condition, post condition and

invariants.
3. Scenarios, meaning the sequential description of the steps to carry out the use case. It

may specify exceptional circumstances and alternate paths.
4. Some additional attributes such as version number, stereotypes, status, etc.

Use case model is user-oriented, where feature model is reuser-oriented. Use case models
provide ‘what’ systems a domain do and feature models provide ‘which’ functionality should
be selected while engineering a new system. So one is not an alternative of the other, rather
they are complementary of each other. Both of them work together to represent a complete
view.

A feature is a distinguishable characteristic of a product and all kinds of features are
represented in a feature model. The types of feature can be classified explicitly in a feature
model. A feature model represents all functional features as well as non-functional features.

Non-Functional
Features

Feature Model

Architecture
Modelling

Component
Specification

… …
… …

… …
… …

Functional
Feature N

Use Case Model N

Functional
Feature 2

Use Case Model 2

Functional
Feature 1

Use Case Model 1

Figure 1: Feature model disintegrated into use cases and integrated into component

It includes common features and variable features. Feature model may specify variation
points and variants and their dependency. It can also characterize the major relationship
between parent feature and child feature using multiplicity. And many more can be done in a
feature model. But what we can’t identify in a feature model is the relationship between user
and functionality. Fine points of a feature can’t be represented in a feature model. Our
primary goal is to fulfil these requirements by use case. Apart from the static view of feature
model we need a dynamic view like use case model to show some more information about a
feature such as, constraints, scenarios, comments and who is responsible for the maintenance
of the feature. The internal interactions between the sub features are also necessary to be
represented which is possible inside a use case.

Figure 1 describes that one feature model is composed of a number of different features. Only
the functional features are taken into consideration to depict a larger interior view with use
case. When a group of use cases are always reused together, they can be mapped to a feature
and depicted as a use case package. In other words, when a reusable functionality described
by the feature is captured by the functionality represented is a group of related use cases. So
one non-functional feature produces one or more use cases, consequently one feature model
produces several use cases, and we can call this use case package. One important thing to
remember is the functionality of the feature must match the functionality of the use case
package.

User Timer<<optional>>
GiveAlarm

<<optional>>
SetTime

<<optional feature>>
Clock

Figure 2: Example of a feature composed of use cases

Consider an example from a cooking stove product line. Clock is an optional feature in any
feature model. SetTime and GiveAlarm are two optional use cases that correspond to the
Clock optional feature.

Case Study

This case study describes the rapid telephone service creation, which is partially adapted from
[2]. Figure 3 shows the feature tree view of the telephone system. Variable features are
identified by the stereotypes <<variant>>. Relationship between parent feature and child
feature are classified by composition, generalization/specialization and variation point and
represented by three different symbols. For example, DialingMode is a variation point and
it is generalized of Pulse and Tone. For each variation point in figure 3, the association
with its child features are denoted by multiplicity. Four types of multiplicity are used here:
optional, alternative, multiple optional and multiple alternative. Suppose, the multiplicity
associated with DialingMode is 1…2, which means at least 1 and at best 2 features can be
selected from this group; i.e. either any one of Pulse and Tone or both of them can be
selected.

<<excludes>>

<<requires>>

PTP Conference

0…2

<<variant>>
Video

<<variant>>
Voice

Type

0…2

PhoneService

<<variant>>
TelephoneCatalogue

1

<<variant>>
Individual

<<variant>>
PABX

<<variant>>
Exchange

1

<<variant>>
POTS

<<variant>>
ISDN

<<variant>>
T1

LineQuality

1…2

<<variant>>
Tone

<<variant>>
Pulse

DialingMode

Composition
0…n Multiple Optional
1…n Multiple Alternative
1 Alternative

Generalization

Variation Point
Legend

Figure 3: High level feature model: Telephone Service

Major dependency relationships are also represented in this model. requires and excludes are
the most common stereotypes which implies that one feature needs another to be selected and
one feature doesn’t allow another respectively. In this example, Voice requires Tone and
Video excludes POTS technology. This case study doesn’t deal with complicated
dependency representation; instead it is more concerned about showing individual feature’s
aspect.

Figure 4 describes the internal detail of the optional feature TelephoneCatalogue. The
major activities that should be done with the telephone catalogue have been characterized
with the help of three actors. The order placed by the customer includes three more activities.
RequestCatalogue is a special case of PlaceOrder. Other actors have to do the other
jobs like CheckStatus and EstablishCredit.

Use case is mainly a text document and use case modelling is mainly the ability of writing.
The textual representation emphasizes much more than diagram. The sequence, additional
path and other information are mentioned in text. Cockburn has developed a template to show
detailed functional requirements [3].

<<optional>>
Telephone Catalogue

<<include>>
<<include>>

<<include>>

<<extend>>

Request
Catalogue

Place Order
Extension points

Additional requests:
after creation of the

order

Arrange
Payment

Order
Product Supply

Customer Data

Customer

Supervisor

Salesperson

Establish
Credit

Check
Status

Figure 4: Use case model: Detail view of ‘TelephoneCataloque’ feature in figure 1.

Our secondary goal is to build a framework for migrating from use case model to product line
architecture and then to an individual component. But this is not a straightforward job. There
are many more intermediate phases in between use case modelling and specifying component.
They are as follows:

1) Use case modelling
2) Business type modelling
3) Component architecture modelling
4) Interface modelling
5) Writing pre and post condition
6) Completing component specification

UML modelling techniques and packages play a significant role in component specification.
Use case diagram as well class diagram, business type diagram, sequence diagram,
collaboration diagram are required in this purpose. And of course OCL can make it more
precise. Use case is mainly used in requirement level. In specification phase class diagram is
more useful to specify interface and component.

Reference
1. Brown, Alan W. & Wallnau, Kurt C. Engineering of Component-Based Systems. 7-15.

Component-Based Software Engineering: Selected Papers from the Software Engineering
Institute. Los Alamitos, CA: IEEE Computer Society Press, 1996

2. Martin L.Griss, John Favaro, Massimo d’Alessandro. Integrating Feature Modeling with
the RSEB. International conference of Software Reuse. IEEE Computer Society, Los
Alamitos, CA, USA, 1998. pp. 76-85.

3. Alistair Cockburn. Writing Effective Use Cases. Addison Wesley, 2001

	Research Idea
	Case Study
	Reference

